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We reproduce the general behavior of complicated bubble and droplet motions
using the variational level set formulation introduced by the authors earlier. Our
approach here ignores inertial effects; thus the motion is only correct as an approxi-
mation for very viscous problems. However, the steady states are true equilibrium
solutions. Inertial forces will be added in future work. The problems include: soap
bubbles colliding and merging, drops falling or remaining attached to a (generally
irregular) ceiling, and liquid penetrating through a funnel in both two and three di-
mensions. Each phase is identified with a particular “level set” function. The zero
level set of this function is that particular phase boundary. The level set functions all
evolve in time through a constrained gradient descent procedure so as to minimize
an energy functional. The functions are coupled through physical constraints and
through the requirements that different phases do not overlap and vacuum regions do
not develop. Both boundary conditions and inequality constraints are cast in terms
of (either local or global) equality constraints. The gradient projection method leads
to a system of perturbed (by curvature, if surface tension is involved) Hamilton—
Jacobi equations coupled through a constraint. The coupling is enforced using the
Lagrange multiplier associated with this constraint. The numerical implementation
requires much of the modern level set technology; in particular, we achieve a signifi-
cant speed up by using the fast localization algorithm of H.-K. Zhao, M. Kang,
B. Merriman, D. Peng, and S. Osherg 1998 Academic Press

1. INTRODUCTION

In this article we shall develop a class of algorithms to capture the behavior of multipl
bubbles and drops in two and three space dimensions. We include some very inter
and recently analyzed steady state cases—e.g. [8], where “double bubbles minimize.
general class of problems has recently received a lot of attention [19].
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We shall use the level set method, first developed in [15], which has been succ
fully applied to a variety of problems, in order to capture the evolution of complex inte
faces in fluid dynamics and elsewhere (see, e.g., [13, 14] and the references ther
Topological changes and the development of singularities pose no difficulties for t
method.

As initially designed in [15], the level-set method applied naturally to problems in whic
there is a clear distinction between “inside” and “outside” of a (possibly multiply connecte
region. Two phase flow problems coupling the motion to the full Navier—Stokes of Eul
equations [2, 21] or to heat release [3], as well as unstable vortex sheet motion [5] and ¢
unstable fronts [6], were recently solved using this method, extending its utility beyond
geometry-driven motion of the original paper [15]. For two-phase immiscible problen
the zero level set of a single function evolves as the interface (perhaps inducing topolog
changes).

In the general (at least three phase) multiphase case a hew methodology is neede
[12], Merriman, Bence, and Osher first extended the level set method to compute the mc
of multiphase junctions. Also in that paper, and in [10, 11] a simple method based on
diffusion of characteristic functions followed by a simple reassignment step, was shown tc
appropriate for the motion of multiple junctions corresponding to pure mean curvature fle
More general motion involving rather arbitrary functions of curvature, perhaps different f
each interface was developed in [12] as well. While the method in [12] was not restric
to gradient flows, it lacks (so far) a clear theoretical basis.

In [18] another approach was suggested in which an influence matrix between each
of phases has to be budtpriori. In real problems this matrix can be very complicated an
may not be determined beforehand. The normal velocity may depend on local quanti
such as curvature, normal direction, as well as global quantities and constraints suc
incompressibility, vortex sheet strength, etc. Moreover, the method in [18] requiresl)
level set functions.

Our method is based on the variational level set approach developed in [22]. As in []
we needh level set functions—as many as there are phases. We associate the system
a physically meaningful energy functional. A gradient flow is defined; this determines t
normal velocity at the interface. Thelevel set functions are coupled through local and/o
global constraints (usually both). This formulation gives us the ability to associate e:
phase with its different physical properties, e.g., surface tension, density, bulk energy;,
Also, boundary conditions and inequality constraints can be turned into equality constra
which we incorporate easily into the algorithm.

We use this formulation here in order to model several interesting multiphase phen
ena in both two and three dimensions. These include: several soap bubbles colliding
merging, drops falling from a ceiling and pinching off, drops sitting on a table, and flu
flowing through a narrow funnel. Our numerical results validate certain expected differen
between two and three dimensions [19].

We note that the motion is that induced by using gradient descent on the potential ene
inertial forces are not included. Nevertheless, steady states computed this way invol
complicated multiphase configurations are correct, as is the motion for unsteady visc
dominated flows. Inertial forces will be included through a level set based Hamiltor
principle formulation in our future work; see also [9].

We also note that Chopp [4], in related work, has constructed minimal surfad®s in
attached to given curves by evolving via level sets and mean curvature flow. He enforce:
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boundary conditions by repeatedly reattaching the surface to the boundary. This meth
different from our present approach which uses constrained optimization.

2. PRELIMINARIES: REVIEW OF THE VARIATIONAL LEVEL
SET FORMULATION

In this approach we express the potential energy of the system haphgses in terms
of then level set functions.

Let ¢ (X) be the level set associated with the phase which occupies r€ioHere
X = (X1, X2) OF X = (X1, X2, X3), i might be multiply connected, ardd2; = {x/¢; (x) = 0}.

Examples of quantities which make up the energy associated with this phase are: the
energy,

£y = / p (O H (i (X)) dX, (2.1a)

wherep > 0 is a density function anHl (x) for x ¢ R! is the Heaviside function; the gravi-
tational potential energy,

g = / g- Xp()H (¢ (X)) dX, (2.1b)

whereg is the magnitude and direction of the gravitational force; the surface energy,

€0 — / (1 () Ver (D)1 (%) dX, (2.10)

whered (x) = (d/dx)H (x) is the Dirac delta function, ang the interfacial surface tension.

As mentioned above, the phases evolve so as to satisfy certain constraints. The ¢
constraint for level set based multiphase motion is that the phases do not overlap,
vacuum regions do not develop. This can be expressed as

Y H@x ) —1=0 VX (2.2)

i=1

This is an uncountably infinite set of pointwise constraints and is, thus, impractica
enforce. Instead we try to replace (2.2) by a single constraint:

2
1 - _ _
> // (Z_; H(gi (X, 1) — 1)) dx = 0. (2.3)

This was shown in [22] to result in a degenerate constraint; i.e. the gradient of
constraint functional vanishes on the constraint set. This makes it unsuitable for use
Lagrange multipliers. Instead, we require that

n 2
%//(ZH(gpi(i,t))—l) dX =€ (2.4)
i=1
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for e > 0 as small as we can manage numerically. In the triple point motion of [22] we foul
€ corresponded to the area (or volume) of one grid cell. In this pagerresponds to, at
most, the area (or volume) of a few grid cells.

Inthe case ofincompressible fluids, the area (volume) of each bubble or drop is conser
This amounts to requiring

/Q p(OH (i () dX = C. (2.5)

(Throughout this papet, will denote any small positive constant a@dwill denote any
O(2) positive constant.)

The variational level set formulation of any of our multiphase problems, is thus of tl
form:

Minimize
£ = / F (01D, 92D, ..., n(X) AX (2.6a)

subject to the constraints

[8@®.02®0....n@dR=Ci. i =1.m 2.73)

Using the gradient projection method of Rosen [17], we obtain the coupled system
evolution equations,

3o 99 .
9 _ _ =) A 9 i=1...n (2.8)
ot 8‘Pl i—1 dpi’
where eaclij is a Lagrange multiplier.
The constraints satisfy

d _ .
at /gj(<p1,¢2,...,<pn)dx=0, j=1...,m, (2.9
t /o

which determines the Lagrange multipliers as solutions of the linear system

Zxk |58 V,0008= = [, 9, Dox (2.10)
j=1,....,m, for¢ = (¢1,..., om). (2.11)

It is easy to see that (@) this system of equations defined in (2.11) is nonsingula
(Vy01, ..., V,0m) are linearly independent, and (b) the energy functional is nonincreasi
in that case and, furthermore, is strictly decreasingvifdy, ..., V,0m. V,, f) are also
linearly independent.

This system of evolution equations often contains Hamilton—Jacobi equations couple
curvature and stiff source terms. Singularities may develop in the solution. The numer
implementation requires much of the modern level set technology. See [22] and Sectic
below for details. The crucial ingredients are:
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(i) High order accurate essentially nonoscillatory schemes (originating in the stud
hyperbolic conservation laws [7, 20]) developed for Hamilton—Jacobi equations in [15, |

(i) Reinitialization of each of the level set functions to be the signed distance to
appropriate interface. This can be easily done by interspersing a few iterations of
following nonlinear partial differential evolution equation,

(d): +sign(e)(IVdi|—1) =0, i=1....,m, (2.12)

with the evolution procedure and then replacindy d;. This idea originated in [21].
(iif) Using the distance function to define curvature on or near the front in the defin
Egs. (2.11) for the Lagrange multipliers via

i = trace[l —dD?d]~*D?d], (2.13)

whereD?2d is the Hessian of,.

This formula yields a constant value gf normal to the front and, of course, is correc
on the front.

To speed up the level set methods, particularly in three dimensions, we have devel
a robust localization technique which only requires computation in a very narrow tube
most two grid points wide) near the front [23]. An earlier approach was developed in
Ours works easily for multiphase problems in two and three dimensions and in the pres
of topological changes. The computational cost is linearly proportional to the numbe
points on the front, which is optimal. This method essentially consists of moving the t
with the motion of the front and reinitializing the level set function only in the tube. (S
Fig. 1). Everything is done in terms of the valuegdpfor |d; | < €, wheree is <2Ax. No
“exploring” in X space is required. We use an upwind scheme in the reinitialization st
thus avoiding any need for numerical boundary conditions at the boundary of the tube

To summarize: The variational level set formulation using the gradient projection met
is applicable to a wide variety of complicated problems of both physical and mathema
interest. Its virtues are:

(a) The method is quite stable since the associated energy diminishes in time.

(b) The level set method deals with topological changes, kinks, cusps, and the com|
tion of geometric properties of the front, such as curvature and unit normal, very natut
in both two and three dimensions.

IV

(a) initial signed distance (b) motion of the front and tube () after reinitialization in the tube

;\]

fropt

boundary of the tube in which level set Is updated
1
1 boundary of the tube in which level set Is reinitialized
| Jevel set function

FIG. 1. Local level set method.
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(c) Constraints (including boundary conditions) are easily incorporated.

(d) Recently developed accurate and nonoscillatory numerical methods are now avail
for solving the resulting equations of motion.

(e) The fast localization technique [23] speeds up the calculations and makes th
dimensional problems accessible on workstations.

3. VARIATIONAL FORMULATIONS FOR MULTIPHASE FLUID PROBLEMS

3.1. Soap Bubbles

Suppose we havén — 1) nonoverlapping bubbleB;, By, ..., By_1 in the regionf.
EachB; is associated with a functiap (x) with ¢ (X) > 0if X ¢ B, ¢ (X) <0if X ¢ (B; U
9Bi), @i (X) =0 if X ¢ dB;. We definepy(X) to be the level set function associated with the
region exterior to all bubbles:

n—-1

Q- J®B uas):
i=1

i.e.,¢p(X) > 0 for X in the interior of that regionyy(X) < 0 for x in any one of the bubbles,
@o(X) =0 for x on the boundary of any one of the bubbles.

We firstignore gravity and consider only the energy due to surface tension. We assume
each bubble conserves its area (volume). Together with our general multiphase requirel
(2.3) or (2.4), we have the following variational level set formulation (which is identice
with that used in our work on optimal domain decomposition [24]):

Minimize the surface energy

n—-1 n-1
£=) &' = Z/V.a«m (X)) Ve (%] dX, 3.1)
i=0 i=0

subject to nonoverlap and conservation of volume constraints,

n—1 2
:—L/ (Z H((Pi(f))—l> dX =€, (3.2a)
2Ja i=0
/H(gaio?))dx:Ai, i=12...n-1 (3.2b)

In this formulation, at the interfack;; between phasieand j, the total surface tension
is i + yj. Different sets offy; }'=1 give different physical problems. If, for example, we
take ally; =0 fori =1,...,n — 1 andyy =1, then all the bubbles which touch initially
will merge into one big circle (sphere) and the steady state will be a family of circles
spheres. This is a problem for which the surface tension between any two bubbles is
and that between any bubble and the air is 1.

Another approach to this special, interesting problem was taken in [9] using only c
level set, thus requiring some decisions at merging. However, that paper also inclu
inertial forces so that the dynamics was time accurate, causing bubbles to vibrate, as
should. We shall handle this situation in the future through a level set version of Hamilto
variational principle.
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Another interesting case occurs when=y; = y» = 0.5 for two bubbles which initially
touch. Then the interface between the two bubbles and the interface between each b
and the air has surface tension one. In the three-dimensional version of two bubbles
the same volume, a long standing conjecture was proven in [8], i.e. that two spheres
a disc as the common interface are the global minimizer. This solution is realized in
calculations, as seen in Figs. 7 and 9.

We use the projection-gradient method, rescale (asin[22]), and arrive at the time evolt
equations

I 1) = Ve (%, 1)
ot oY T Ve

V(p- ()7 t) n-1
v I—’)"—A Hgx.1) —1||. (3.3a
4 (IVwi(X,t)l Hi (; (i (X, 1) )] (3.3a)
i=0,1,...,n—1, uo=0, with boundary conditions

3¢i —
ZXx) =0 Q. 3.3b
on X on (3.3b)
The Lagrange multipliers apg,i =1, ..., n—1, corresponding to (3.2b), aidcorres-
ponding to (3.2a). They are determined from (2.11), properly scaled, by the linear sys

A by
M1 b>

Mijloxn - | . | =] . | (3.3¢c)
Mn—1 b

where

n-1 n—1 2
m11=2/96<¢i<>?,t))|w>i(<>?, t)>|<2 H<¢,-<(x,t>>>—1> dx  (3.3d)
i=0

j=0

m =/5<¢i_1(>?,t>)|V¢i_1<>?,t)|d>?, i=2...n, (3.3¢)
Q

n-1
My = my = /Q(S(qsi,l(x‘, )|V _1(X, t)|<z H (@ (X, 1) — 1> dx,
j=0

(3.3f)
i=2...,n,
m;; =0, otherwise (3.30)
n—1 n—1
by = Z/Qs«bi (X, 1)Vei (X, V)] (Z H(g;(x. 1)) — 1)
i=0 =0
Vi (X, 1) =
<77 (o) o
_ _ Vi_1(X,t —
bi = / 5(¢>i1(X,t))|V¢i1((X,t))I{V'M1(&)} dx,
Q |V¢|_1(X, t)| (33|)

i=2,..., n.
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The symmetric matrixrfy;] is positive definite if (2.4) is satisfied (not (2.3)—that gives
a degeneracy). We see that the Lagrange multiplier corresponding to the minimal ove
and/or vacuum constraint (3.2a) acts to coupleghso as to satisfy this crucial property.

For uj #0 andy; > 0 and constant, then, except for the coupling constraints, we have
Hamilton—Jacobi equation corresponding to motion by a constant gspe@erturbed by
y; times the curvature. This familiar problem arises throughout the level surface world ¢
numerical techniques and analytical results do exist [15].

We note that in the special one-bubble case a single level set is adequate—see [9]. |
present framework, if we consider (3.1)—(3.3) with any two nonnegative constants
so thatyy + y1 =1, we have the same motion as in the single level set case up to a triv
time scaling. The proof of this fact is illuminating. We present it here:

dpo(X.t) Vepo(X. 1) N o

T = |Vgo(X, )| | oV - (m) - A(JZ; H (¢1 (X, 1)) — 1)] (3.4a)
dpr(X ) Vi (X, 1) N

—r = VX 0l v (Wm(m) — 1 — A(Jz_% H(¢; (X, 1)) — 1)]

(3.4b)
We assume thazil=O H(¢i (X, 1)) — 1=b#0 on the interface and denote fo 0, 1,
f98(¢i)|v¢i |dx = A = aredlength of the interface

Jo 8@)IVHI[V- (Vi /IVei])]dx =K =total mean curvature of the interface, then
(3.3(c)—(i)) here becomes

(AP + Abuy = (1 — y0)bK

(A, + Auy = 71K (34¢)

from which we find = —y,/ Ab and, more importantly; = K/A=x = average mean
curvature.

If we have initialized so that the's are replaced by distance functions, thenr= —¢;
in this case and we get for eagh i =0, 1,

dgi 1 (Ve
E(X’t)_ 2|V(p,(X,t)||:V <7|V¢i()?,t)|> K]. (3.4d)

This is the single level set formulation with one-half the speed.

3.2. Drops Falling and Pinching Off from the Ceiling

We consider a water drop initially in contact with the ceiling. The surface tension for
tends to keep it attached while gravity pulls it down. A steady state shape attached to
ceiling may be obtained, or the water drop may fall. The geometric shape of the ste
state solutions and the topological transitions as it leaves the ceiling are quite interes
and challenging problems—see, e.g. [19] for an interesting approach to the latter. -
variational level set formulation allows us to compute the steady states (if any) accura
and also gives us a reasonable motion if acceleration affects are negligible.
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[11) s [)11)]

drop

air

gravity
1: surface tension

FIG. 2. Drop on the ceiling.

In Fig. 2 we show the liquid drop, the ambient air, and the ceiling, all in contact. T
total energy is the surface energy plus the gravitational potential energy of the drop.
line (point) of contact of the three phases is subject to the surface tension of the t
surfaces. Since it is massless, the vector resultant of the three tensions must add to z
any direction. The contact angle satisfigs- to = t3C0sf.

We have two constraints. The first is just that the volume (area) of the drop is preser
The other is the boundary condition at the ceiling; i.e., the drop cannot penetrate the
We turn this into an equality constraint using the level set formulation. We first constru
level set functiony (x), which is the signed distance from the ceiling. Thus the zero lev
set coincides with the surface of the ceiling (see Figs. 2, 3). Then we construct a sul
tension functiorr (1) defined on the zero level set of

1 — 72| ¥ =0,

T3 if ¥(x) <O. (3.5)

f(’ﬁ):{

Next we consider two cases:

Casel. 7 < o 0r0 > /2. See Fig. 3(a). The liquid wets the solid with the amour
of wetting increasing ag increases tar. We initialize the configuration for the drop as in
Fig. 3(a). It is easy to see that the energy functional to be minimized is composed o
surface energy of the drop,

/5(¢(>7))|V¢(>7)II(W)d>? (3.6a)
Q
and the gravitational energy of the drop,
/ H (¢ ())H (= (X)) h(x)g dX, (3.6b)
Q
T+ T+ / >0
® N ¥<0
>0
T —
a b c
level set function for the drop level set function for the ceiling

FIG. 3. Level sets for the drop-on-ceiling problem.
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funnel

¥>0 ¥>0

FIG. 4. (a) Liquid in a funnel; (b) funnel wall.

whereg is the gravity constant ank(x) is the altitude. The volume (area) conservation
constraint for the drop becomes

/Q H (@R H (—y () dx = A (3.72)

and the no penetration boundary condition at the ceiling surface can be written as
constraint

/Q H(=¢(X)H (X)) dx = 0. (3.7b)

The variational level set formulation of the problem thus becomes:
Minimize

&= /9[8(¢>(>?))|V¢(>?))|r(1//) + H(@ () H (¢ (x)h(x)g] dX. (3.82)

Subject to

/ H(—p(X)H (¥ (X))dx =0 (3.8b)
Q

[ HOEMHE@ dx= A (3.80)
Q

Using the gradient projection method, we get the evolution equatiop(fart)
Ip(X. 1) _ Vo (X, 1)
PYE Vo (X, )] [V- (I(w)4|v¢(>?,t)|)

= HE=Y ()hOg + uH @ (X)) — AH (—Iﬂ(f))} , (3.9)
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t=0 1=0.002
100 100
80 80
60 60
40 40
20 20
20 40 60 80 100 20 40 60 80 100
t=0.02 t=0.08
100 100
80 80
60 60
40 40
20 20
20 40 60 80 100 20 40 60 80 100

FIG.5. Four bubbles mergingin 2By =1, y1 =y, =y3=y,=0.

=0 1=0.002
100 100
80 80
€0 60
40 40
20 20
20 40 60 80 100 20 40 60 80 100
t=0.02 t=0.05
100 100
80 80
60 60
40 40
20 20
20 40 60 80 100 20 40 60 80 100

FIG. 6. Double bubble minimizer in 2Dy =y, =y, = 0.5.
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t=0.01025
t=0.04 t= 0.075

FIG. 7. Double bubble minimizer with equal surface tension.

where i, A are the Lagrange multipliers for the boundary constraint and volume (are
constraint, respectively. Using the fact that

H (@ (X)H(—y (X)) = 0, (3.10a)
H2(y (X)) = H (X)), (3.10b)

we get the following decoupled linear system for the Lagrange multipliess

— = \Y% =
M/QS(¢)IV¢IH(W(X))dX = —/§23(¢)|V¢>IV- <T(W)|V—zI>H(W(X))dX (3.10c)

_ A\ _ _
)»/ §(@IVPIH (=¥ (X)) dx = / 5(¢)|V¢|[V' (T(W)—d)) - h(X)Q]H(—W(X))dX-
Q Q Vol

(3.10d)
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=0Es t= 0.04

FIG. 8. Double bubble minimizer with unequal surface tension.

We have obtained numerical results for the steady state shape when gravity is small c
difference of the surface tensions is large (not shown here). In the opposite case when g
is large or the difference of the surface tensions is small, the drop falls. In three dimens
pinchoff can occur due to gravity and the curvature effect—see Fig. 11—which is w
happens in real life. In two dimensions, pinchoff occurs due solely to gravity—Figs. 10,
and 16. This requires a larger ratio between gravity and the difference of surface ter
than in three dimensions.

Remarl3.2 We note that (3.9) and ((3.10)(d)) indicate that at steady state the shap
the drop satisfies the well-known Laplace—Young equation,

Vo
o (35) s



508 ZHAO ET AL.

(surface tensioyfcurvaturg = (altitude) (gravitational constaint

Case2. wp<morf <m/2.(See Fig. 3(b).) This case can occur for certain liquids, e.(
mercury. Here we use a different level set configuration for the drop; see Fig. 3(b). Now
constrained minimization problem becomes formally exactly as above. Note carefully
different regions for whiclyp > 0 in Figs. (3a) and (3b). In this case, the drop either stay
on the ceiling or falls down without pinchoff. See Figs. 12, 13, and 17.

In both cases, the boundary constraint may be degenerate which means that (3.10c
reads G= 0 and we may set =0 in (3.9).

Also the geometric shape of the ceiling can be quite arbitrary, e.g. a drop falling fron
wedge. The only modification needed comes in the definitioh(ef —the signed distance
function. Numerical results are shown in Figs. 16 and 17.

3.3. Drops Sitting on the Floor

If we reverse the direction of the gravity and turn the picture in Section 3.2 upside do
and do the same for Figs. 3a and b, we can precisely model the liquid drop sitting on
floor case. See Figs. 14 and 15. Of course, in the unwetted wall, the drop spreads, whi
the wetted wall case, the drop rises to a stationary configuration.

3.4. Liquid Penetrating through a Narrow Funnel

Suppose we have a narrow funnel shaped as in Fig. 4. Certain fluids flow slowly throt
the funnel due to gravity or some other gradient induced force. Because of the suri
tension, round surfaces (arcs) are formed both on the top and bottom. The liquid ma;
may not go through the fluid depending on the curvature on the top and bottom, surf
tension constant and weight of fluid. This model problem can be formulated almost exa
as in Section 3.2 except a more complicated barrier fungtior has to be constructed for
the funnel as in Fig. 4, wher¢ (x) < 0 in the open complement of the region shown for
which vy (X) > 0:

Minimize
E= /{23(¢(Y))IV¢(Y)W(Y) + H(@ ())h()g dx,
subject to
/QH(¢(>7))H(¢(>7))d>7=0
/S2H(¢(>7))H(—¢(>7))d>7= A.

Some numerical calculations are shown in Figs. 18, 19, 20, and 21.
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4. NUMERICAL IMPLEMENTATION AND RESULTS

In allthese examples, we have to use numerical approximations for the Heaviside funi
and Dirac function which are defined as

1, X > «,

X < —a,

oa

Ha(0) = 1 X 1 TX
—{1+—+—sin<—)} IX| < e;
2 o 7 o

IX| > a,

0,
5,(X) = dH. 00 _ 1
¢ dx — {1+cos(nxﬂ, IX| < a,
20 o

whereq is the numerical width of ous(x) and H (x), which we take to be the grid size
o = AX.

The numerical methods developed in [22] Section 3 are directly applicable to the
problems described in Section 3 above, except for the implementation of the new constr:
For the soap bubble problem, the system of Egs. (3.3c) has to be solved for-thbis
was also mentioned for the optimal decomposition of domain problem in [22, Egs. (2.2
(2.21)]. No new difficulties are encountered.

For the falling drop problem we have a simple decoupled system (3.10c), (3.10d) for
two Lagrange multipliers, and the system can become degenerate because the left an
sides of (3.10c) will (and should) vanish if the drop falls. A similar situation arises in t
liquid through funnel case.

This means that the no penetration constraint does not take effect until penetration oc
then the constraint stops its progress. In our numerical calculations, we have found th:
size of that penetration is at most one grid cell, as in the case for the no overlapping ar
vacuum constraint. Since the values of surface tension are different for the interface bet
the liquid and air and for the interface between liquid and wall (wetted vs unwetted),
first defined our surface tension as

(X)) =1(¢¥) =1+ tH(—¥ (X)), XeQ,

wherest is the difference between the two surface tensions. In our numerical calculat
we use the numerical approximatiéfy (x) and, thus, cause a smoothed out transition |
surface tension, within a boundary layer. We found some improvement in the numel
results, i.e. reduction of the thickness of penetration and a somewhat smoother inte
when we used the following shift in the argument of the numerical Heaviside function,

TX)=1t(}) =17 +8tH, (—y¥(X) —a), X € Q.

This is probably because the stiffest change in the surface tension is now shifted away
the boundary. Thus we used this approximationl{e-1) in the calculations which follow.
In Fig. (5) four two-dimensional (2D) bubbles merge while the area of each bub
is preserved. We takgy =1, y1 = y2 = y3=y4=0. This is a real merging case since the
interface length between any two bubbles does not affect the energy. We see that the
bubbles do not become a circle. This shows that we have very little numerical visco
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t=0.0 t=0.1
t=0.2 t=0.3

FIG. 9. Double bubble minimizer with equal surface tension.

Figure 6is a 2D double-bubble minimizer case, where y; = y» =0.5;i.e., each interface
has the same surface tension. We see thé a2@les form at the triple point.

We next calculate bubbles merging in 3D. Figure 7 shows a dumbbell in a doughnut wt

is a local minimizer for the double bubble minimizer case in [8]. Here- y; = 3>, =0.5.
If we let the surface tension of the dumbbell be smaller than the surface tension of
doughnut, then we see that the doughnut cuts the dumbbell in two in Fig. 8. Figure 9 i
interesting double bubble minimizer case where the smaller ball emerges from the inte
of a bigger ball.

In Fig. 10, a 2D liquid (e.g., water) droplet tries to stay on the ceiling by wetting tt
ceiling surface as much as possible. Since gravity is large enough relative to the sur
tension, we see pinchoff. Figure 11 is a similar 3D droplet calculation, but the gravity c
be considerably smaller than in the 2D calculation for pinchoff to occur. Figures 12 a
13 show respectively 2D and 3D calculations corresponding to case 2 (e.g., mercury
Section 3.2. Figures 14 and 15 are computations for the steady state shapes for drops <
on the floor in 2D, corresponding to wetted (water) or unwetted (mercury) cases. Again
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FIG. 10. Falling drop in 2D. Surface tension with unwetted walD.1, air=1, and gravity=400.
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FIG. 11. Falling drop in 3D. Surface tension with unwetted wall0.5, air=1, and gravity= 100.
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dx=0.005, dt=0.00001
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FIG. 12. Falling drop in 2D. Surface tension with wetted walD.2, air= 0.5, and gravity= 100.
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FIG. 13.
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~

20 40 60 80

t=0.02

100

20 40 60 80

t=0

100

100

80

€0

40

20

100

80

60

40

20

dx=0.01, dt=0.00001

N

20 40 60 80

t=0.02

100

@)

20 40 60 80

100

100

80

60

40

20

100

80

40

20

t=0.002

VAR

20 40 60 80 100

t=0.05

20 40 60 80 100

FIG. 14. Surface tension with unwetted wall0.2, air=0.3, and gravity=50.
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FIG. 15. Drop sitting on floor in 2D. Surface tension with wetted wall.5, air=0.6, and gravity= 1.
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dx=0.005, dt=0.00001
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FIG. 16. Drop falling from wedge in 2D. Surface tension with unwetted walll, air=0.2, and
gravity=100.

balance is between the surface tension forces and gravity. Figures 16 and 17 show ho
drops fall from the tip of a wedge in 2D. Figure 16 corresponds to the wetted case; Fig.
corresponds to the unwetted case.

Figures 18 and 19 show liquid flowing through a narrow funnel in 2D. Figure 18 shov
the fluid going through the funnel. Due to the degeneracy of the boundary constrail
our numerical results show the liquid slightly penetrating the wall. By refining the grid
Fig. 19, we can see that the size of the penetration is also reduced. The size of the penett
is about one grid cell. In Fig. 20, we show a liquid at restin a 2D funnel. Finally, in Fig. 2
we show a liquid going through an asymmetric funnel.

In Figs. 18 and 19 we print out the area at various times. We lose around 13% on
200 x 200 grid calculation, 9% on the 300300 grid calculation. However, we note that
most of the loss (and occasional gain) occurs very early. For example, if we pick up
calculation at = 0.02 the loss is zero up to three decimal places in the refined calculati
and 0.4% on the cruder grid. This is typical for our method.

5. CONCLUSIONS

We have developed a variational level set approach to capture the behavior of bub
and droplet motions involving several phases. The method, as usual, handles topolo
changes easily and automatically and is relatively easy to program. The approach ign
inertial effects. These will be included in future work. The method is fast (overnight on
workstation for a three-dimensional problem) and local boundary conditions are treated
a penalty method.
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FIG. 17. Drop falling from wedge in 2D. Surface tension with wetted wa0.1, air= 0.2, and gravity= 100.

FIG. 18.
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FIG. 19. Refined grid version of Fig. 18.
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FIG. 20. Liquid at rest in funnel.
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FIG. 21. Liquid flowing through asymmetric funned =50, surface tension with the funnel0.1, surface
tension with the aie=0.2.

Our results seem to reproduce the essential physics of the problems studied. Are:
for demanding problems is essentially nil, after the (dynamic) calculation settles do
Overall, we lose as much as 9% on a 30800 grid calculation. We will address this issue
using a more sophisticated reinitialization scheme, in future work.

REFERENCES

1. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating intefaCesyput. Physl18,
269 (1995).

2. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation for Eulerian interface captur
methods for incompressible fluid flowd, Comput. Physl24, 449 (1996).

3. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan prob
J. Comput. Physl35(1997), 8-29.

4. D. Chopp, Computing minimal surfaces via level set curvature flo@omput. Physl06, 77 (1993).

5. E. Harabetian and S. Osh&egularization of lll-Posed Problems Via the Level Set ApprpatiA CAM
Report 95-41, 1995. [SIAM J. Appl. Math., to appear]

6. E.Harabetian, S. Osher, and C.-W. Shu, An Eulerian approach for vortex motion using a level set regulari:
procedure,]. Comput. Physl27, 15 (1996).

7. AHarten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high order accurate essentially nonc
latory schemes, I1lJ. Comput. Phys71, 231 (1987).

8. J. Hass, M. Hutchings, and R. Schlafly, The double bubble conjeéleetyon. Res. Announce AMS98
(1995).

9. M. Kang,A Level Set Approach for the Motion of Soap Bubbles with Curvature or AccelerBtioD. thesis,
UCLA, CAM Report 96-19, 1996.



518 ZHAO ET AL.

10

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

. P. MascarenhaBjffusion Generated Motion by Mean Curvatut¢CLA CAM Report 92-33, 1992.

B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean curvatM& Belected Lectures
in Mathematics, The Computational Crystal Grower's Worksleafited by J. Taylor (AMS, Providence, RI,
(1993), p. 73. [UCLA CAM Report 92-18, 1992]

B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: A level set apprbacbmput. Phys.
12,334 (1994).

S. Osher, Subscale capturing in numerical analysBran. Int. Congress of Mathematicians, Zurich, 1994
(Birkhauser, Zurich, 1995), p. 1448.

S. Osher, Subscale capturing in CFDCIRD Review(Wiley, Chichester, 1995), p. 182.

S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based
Hamilton—Jacobi formulation. Comput. Physr9, 12 (1988).

S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton—Jacobi edilétdns,
J. Numer. Anal28, 907 (1991).

G. Rosen, The gradient projection method for nonlinear programming. Part Il. Nonlinear constr&ots,
Indus. Appl. Math9, 514 (1961).

J. A. SethianTheory, Algorithms and Applications of Level Set Methods for Propagating Interf@eésvl,
U.C. Berkeley Report, PAM-651, 1995. [ACTA Numerica, 1995]

X. D. Shi, M. P. Brenner, and S. R. Nagel, A cascade of structure in a drop falling from a faucet, preprint

C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing scheme
J. Comput. Phys83, 32 (1989).

M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompres
two-phase flowJ. Comput. Physl14, 146 (1994).

H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase thotior
Comput. Phys127, 179 (1996).

H.-K. Zhao, M. Kang, B. Merriman, D. Peng, and S. Osher, A PDE based fast local level set method, UC
CAM Report 98-25, 1998.

H.-K. Zhao, J.-P. Shao, S. Osher, T. Chan, and B. Merriman, preprint.



